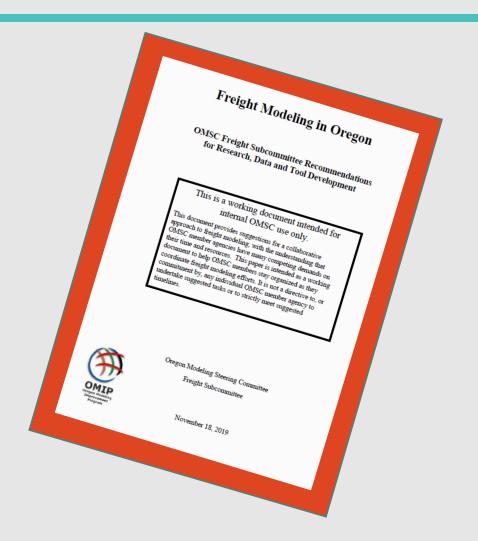


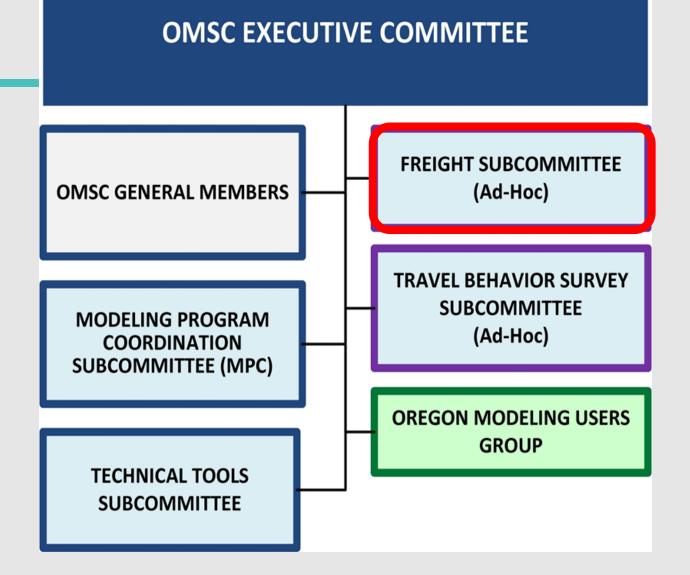
## **OMSC Freight Subcommittee Report-Out**

Prepared for the Oregon Modeling Users Group May 7, 2020


Presented by Becky Knudson, ODOT






## **Overview**

- Purpose
- Process
- Outcome



## Freight Subcommittee

- ✓ Established Fall 2017
- ✓ Two-year Charter
- ✓ Completed late 2019





## **Broad and Diverse Membership**



Transportation Planning and Analysis Unit Rail Division **Motor Carrier Division** Trans Data Region 1 Research Program

















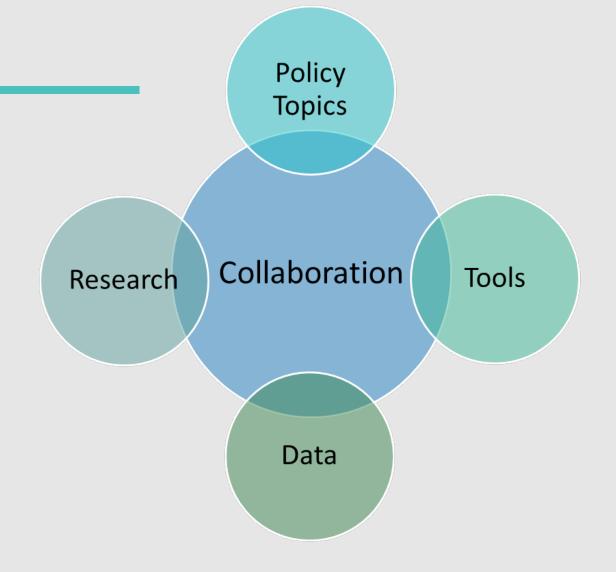










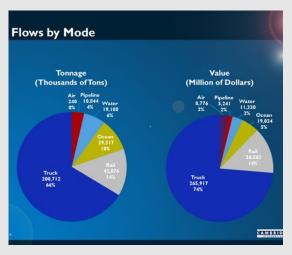







# **Committee Purpose**

"Identify issues and provide strategic direction for actions supporting robust analytical capabilities in the field of freight planning."




Charter available here:

## Approach









Policy Topics Tools Data Research Needs





### We can already do some things...

- Simulate average annual commodity flows by county. Higher volume facilities (more populated counties) have greater detail
- Estimate transportation freight demand derived from economic activity
- Evaluate potential policy scenarios, changes to the transport system, future economic conditions, as well as other areas of future uncertainty using current tools
- FAF provides commodity flows for all modes: truck, rail, air, marine, and pipeline.



### There is a lot we cannot do...

- Accurately forecast impacts of change to individual industries and commodity movement.
- Model or forecast quickly changing logistic tactics used by firms today, especially related to e-commerce, warehouse logistics, transload facilities, and agricultural commodity sheds.
- Simulate impacts of truck logistics, such as truck parking and hours of service regulations.
- Simulate detailed freight behavioral sensitivity to the changing environment (e.g. operating costs, labor costs, regulations, congestion, and reliability).





### Data

**Opportunities for collaboration...** 

- ➤ Obtain real-time and other observed data related to freight by mode and commodities
- Develop methods to evaluate new and potential data sources that ensure quality and affordability



### **Tools**

Opportunities for collaboration...

- Develop and implement incremental improvements to freight analysis tools and data
- Look for ways to make progress at an affordable price



## Opportunities for collaboration...

### **Policy Analysis**

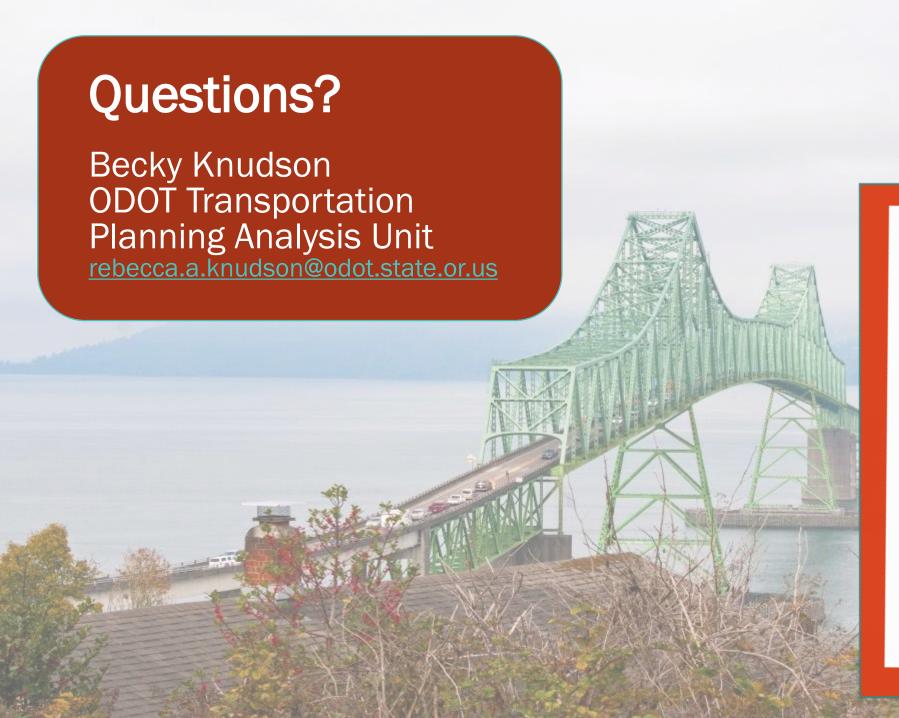
- ➤ Partner with Oregon shippers and transportation providers to develop and prioritize solutions
- ➤ Support integration of freight into all aspects of transportation planning







**Motor Carrier Technical Advisory Committee** 


## Stakeholder Outreach

## Recommended Action Plan - Data Example

| Item<br>No. | Action                                                                                                                                                                                                                                                                                                                                         | Lead Person or<br>Organization | Partners/<br>Contributors              | Approx.<br>Timeline |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------|---------------------|--|--|--|
| DATA        |                                                                                                                                                                                                                                                                                                                                                |                                |                                        |                     |  |  |  |
| D.1         | Inventory light commercial truck data sources and costs.  Potential sources of data for medium trucks (26,000 lbs or less), including as many of these data points as possible: Commodity, weight, value, trip distance, O/D, seasonal patterns, logistic attributes, fuel type, fuel efficiency, miles of travel, fleet age.                  |                                | DMV<br>OTA                             | 1-2 years           |  |  |  |
| D.2         | Inventory heavy commercial truck data sources and costs.  Potential sources of data for heavy trucks (over 26,000 lbs), including as many of these data points as possible: Commodity, weight, value, truck configuration, trip distance, O/D, seasonal patterns, logistic attributes, fuel type, fuel efficiency, miles of travel, fleet age. |                                | MCTD (Wilson)<br>FHWA (Fortey)         | 1-2 years           |  |  |  |
| D.3         | Maintain commodity flow data.  Look for ways to increase the level of commodity data detail.                                                                                                                                                                                                                                                   | ODOT (TPAU)                    | ODOT (Region 1) Port of Portland (POP) | Ongoing             |  |  |  |
| D.4         | Obtain access to beneficial data sets identified in action items D.1 and D.2.  Develop agreements with data owners and cost-sharing agreements with OMSC member agencies as appropriate.                                                                                                                                                       | ODOT (TPAU)                    | EROAD<br>ATRI<br>HERE<br>ITERIS        | 2-5 years           |  |  |  |

# Recommended Action Plan - Research Example

| RESEARCH   |                                                                              |             |                 |           |  |  |  |
|------------|------------------------------------------------------------------------------|-------------|-----------------|-----------|--|--|--|
| R.1        | Develop methods for the OMSC to use when evaluating the quality              | ODOT        |                 | 2-5 years |  |  |  |
|            | of new data sources.                                                         | (Research)  |                 | -         |  |  |  |
| R.2        | Monitor research efforts by the Texas A&M Transportation                     | ODOT (Dunn) | POP (Drumm)     | 2-5 years |  |  |  |
|            | Institute (TTI) related to e-commerce.                                       |             | FHWA (Fortey)   |           |  |  |  |
|            | Scope out a list of research desires for Oregon to help create direction for |             | PSU (Figliozzi) |           |  |  |  |
|            | TTI. (A key need is a model framework for simulating ecommerce               |             |                 |           |  |  |  |
|            | logistics and delivery. Note that PSU is currently also leading a project    |             |                 |           |  |  |  |
|            | looking at e-commerce growth and potential freight impacts.)                 |             |                 |           |  |  |  |
| R.4        | Research elasticities between truck and non-highway freight modes            |             | FHWA (Fortey)   | 2-5 years |  |  |  |
|            | Identify factors impacting commodity flow via different modes,               |             |                 |           |  |  |  |
|            | investigate and identify forces impacting mode choice by commodity and       |             |                 |           |  |  |  |
|            | find the tipping point between modes.                                        |             |                 |           |  |  |  |
| R.5        | Develop a model framework for predicting shifts between freight              |             |                 | 5-8 years |  |  |  |
|            | modes under different scenarios.                                             |             |                 |           |  |  |  |
| <b>R.6</b> | Research (or identify an existing source of observed data) to better         |             |                 | 5-8 years |  |  |  |
|            | understand how trucks adjust their movements in response to                  |             |                 |           |  |  |  |
|            | highway travel impediments.                                                  |             |                 |           |  |  |  |
| R.7        | Research industry operational responses to new weight, length,               |             | OTA             | 5-8 years |  |  |  |
|            | height and load restrictions.                                                |             |                 |           |  |  |  |



### Freight Modeling in Oregon

OMSC Freight Subcommittee Recommendations for Research, Data and Tool Development

### This is a working document intended for internal OMSC use only.

This document provides suggestions for a collaborative approach to freight modeling, with the understanding that OMSC member agencies have many competing demands on their time and resources. This paper is intended as a working document to help OMSC members stay organized as they coordinate freight modeling efforts. It is not a directive to, or commitment by, any individual OMSC member agency to undertake suggested tasks or to strictly meet suggested timelines.



Oregon Modeling Steering Committee

Freight Subcommittee

November 18, 2019